Array Signal Processing Algorithms for Beamforming and Direction Finding
نویسنده
چکیده
Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptive array processing algorithms have been reported in the literature in the last several decades. These algorithms, in a general view, exhibit a trade-off between performance and required computational complexity. In this thesis, we focus on the development of array processing algorithms in the application of beamforming and direction of arrival (DOA) estimation. In the beamformer design, we employ the constrained minimum variance (CMV) and the constrained constant modulus (CCM) criteria to propose full-rank and reduced-rank adaptive algorithms. Specifically, for the full-rank algorithms, we present two low-complexity adaptive step size mechanisms with the CCM criterion for the step size adaptation of the stochastic gradient (SG) algorithms. The convergence and steady-state properties are analysed. Then, the full-rank constrained conjugate gradient (CG) adaptive filtering algorithms are proposed according to the CMV and CCM criteria. We introduce a CG based weight vector to incorporate the constraint in the design criteria for solving the system of equations that arises from each design problem. The proposed algorithms avoid the covariance matrix inversion and provide a trade-off between the complexity and performance. In reduced-rank array processing, we present CMV and CCM reduced-rank schemes based on joint iterative optimization (JIO) of adaptive filters. This scheme consists a bank of full-rank adaptive filters that forms the transformation matrix, and an adaptive reduced-rank filter that operates at the output of the bank of filters. The transformation matrix and the reduced-rank weight vector are jointly optimized according to the CMV or CCM criteria. For the application of beamforming, we describe the JIO scheme for both the direct-form processor (DFP) and the generalized sidelobe canceller (GSC) structures. For each structure, we derive SG and recursive least squares (RLS) type algorithms to iteratively compute the transformation matrix and the reduced-rank weight vector for the reduced-rank scheme. An auxiliary vector filtering (AVF) algorithm based on the CCM design for robust beamforming is presented. The proposed beamformer decomposes the adaptive filter into a constrained (reference vector filter) and an unconstrained (auxiliary vector filter) component. The weight vector is iterated by subtracting the scaling auxiliary vector from the reference vector. For the DOA estimation, the reduced-rank scheme with the minimum variance (MV) power spectral evaluation is introduced. A spatial smoothing (SS) technique is employed in the proposed method to improve the resolution. The proposed DOA estimation algorithms are suitable for large arrays and to deal with direction finding for a small number of snapshots, a large number of users, and without the exact information of the number of sources.
منابع مشابه
TDL-based Wideband Beamforming for Radio Sources Close to the Array Endfire
Uniform linear array (ULA)-based tapped-delay line (TDL) structure has good performance metrics when the signal sources are located at the middle angles. It offers poor performance when the signal sources are close to the array endfire. In this paper, a new approach is proposed which offers higher performance and desired beamforming on TDL structure when the wideband uncorrelated radio sources ...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملImplementation of adaptive array algorithms
Some new, efficient, and numerically stable algorithms for the recursive solution of matrix problems arising in optimal beamforming and direction finding are described and analyzed. The matrix problems considered are systems of linear equations and spectral decomposition. While recursive solution procedures based on the matrix inversion lemma may be unstable, ours are stable. Furthermore, these...
متن کامل2-D Spatial Smoothing for Multipath Coherent Signal Separation
0018-9251/98/$10.00 ID 1998 IEEE As the digital signal processing technologies advance, the use of adaptive arrays to combat multipath fading and to reduce interference becomes increasingly valuable as a means of adding capacity to mobile communications. There are many optimum adaptive array combining algorithms. Among them, the high resolution direction finding based constrained adaptive beamf...
متن کاملWideband Capon Beamforming for a Planar Phased Radar Array with Antenna Switching Moon - Sik
Recently, there has been great interest in the development of advanced radar systems with phased arrays [1], [2]. In traditional multichannel radar array systems, the number of receivers should be equal to the number of receiving antennas, so the hardware expense and power consumption are very high [3]. A radar array system based on antenna switching is a promising substitute due to its lower c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009